Next-Generation, Gravitational-Wave Detectors Jan Harms Università degli Studi di Urbino INFN Firenze

History

- Rai Weiss of MIT taught a course in GR at the end of the 60s, and searched for a problem to give to students
- How to detect GWs with laser interferometric detectors?
- Weiss wrote the first description of a detector

QUARTERLY PROGRESS REPORT

(V. GRAVITATION RESEARCH)

10/11/2016

- B. ELECTROMAGNETICALLY COUPLED BROADBAND GRAVITATIONAL ANTENNA
- 1. Introduction

The prediction of gravitational radiation that travels at the speed of light has been

	Virgo	AdV	aLIGO	ET
1985	R&D			
1990	White Paper, CDR (1989) R&D			
1995	Approval (1994) Final Design, TDR (1995) Beginning Infrastructure (1996)		R&D	
2000		R&D	CDR (1999)	
	Detector (2003)	First AdV sensitivity projection (2004)	R&D	
2005	Scientific data taking	AdV White Paper, CDR (2005)	Funding (2006)	First Idea (2005)
	(2007)	Approval (2009)	Building (2008)	R&D
2010	Decommissioning (2011)	First orders (2010) TDR (2012)	Installing completion	CDR (2011)
2015			(2014)	
		Completion Installation (2016) First data taking (2017)		
2020				
2025				Credits: H Lück

Basic Concept of LIGO/Virgo Detectors

Amplitude h on Earth:

- h ~ 10⁻²¹ (GW150914)
- L = 3km, ΔL ~ 10⁻¹⁸ m

Ground-Based, Laser-Interferometric GW Detectors

10/11/2016

Technology for Third-Generation GW Detectors

3G Concepts

	CE	CE pess	ET-D (HF)	ET-D (LF)
$L_{\rm arm}$	$40\mathrm{km}$	$40\mathrm{km}$	$10{ m km}$	$10\mathrm{km}$
$P_{\rm arm}$	$2\mathrm{MW}$	$1.4\mathrm{MW}$	$3\mathrm{MW}$	$18\mathrm{kW}$
λ	$1550\mathrm{nm}$	$1064\mathrm{nm}$	$1064\mathrm{nm}$	$1550\mathrm{nm}$
$r_{\rm sqz}$	3	3	3	3
$m_{\rm TM}$	$320\mathrm{kg}$	$320\mathrm{kg}$	$200\mathrm{kg}$	$200\mathrm{kg}$
$r_{\rm beam}$	$14\mathrm{cm}$	$12\mathrm{cm}$	$9\mathrm{cm}$	$7\mathrm{cm}~(\mathrm{LG}_{33})$
T	$123\mathrm{K}$	$290\mathrm{K}$	$290\mathrm{K}$	$10\mathrm{K}$
ϕ_{eff}	5×10^{-5}	1.2×10^{-4}	1.2×10^{-4}	1.3×10^{-4}

10/11/2016

Einstein Telescope: Infrastructure

ET: Xylophone Configuration

- 3 interferometers to gain full profit from triangular detector shape
- Split each interferometer into two to optimize sensitivity and increase observation band

ET: Xylophone Sensitivity

10/11/2016

ET: Noise Budgets

Key Technology: High Power

High-power laser

Key Technology: Squeezing

Squeezed light is produced by parametric down-conversion in non-linear crystals.

Key Technology: Filter Cavities Squeezed-light rotation by filter cavity

Reflect squeezed light from resonator before injecting it into the interferometer

Challenge: requires very low-loss cavities

10/11/2016

Key Technology: High-Q Materials

Substrate thermal noise

- Thermo-elastic noise
- Brownian noise

Coating thermal noise

- Brownian noise
- Thermo-refractive noise
- Thermo-elastic noise
- Photothermal noise

Suspension thermal noise

- Brownian noise
- Thermo-elastic noise

Key Technology: Seismic Isolation LIGO Concept

Seismic isolation platform under vacuum

Internal seismic isolation

External (hydraulic)

Active seismic isolation uses low-noise sensors and actuators to suppress seismic noise.

10/11/2016

Key Technology: Seismic Isolation Virgo Concept Superattenuator

Mechanical filters

Key Technology: Gravity-Noise Cancellation

Observed seismic correlations

10/11/2016

0

0

0

Key Technology: Cryogenics

Thermal noise reduction

- 1. Cool mirrors and suspensions
- 2. Noise scales with T or $T^{1/2}$

Challenges (some of them)

1. New materials

heat shields

2. Seismic shortcuts from heat links and light scattered from

Shapiro et al, 2015

Science with Third-Generation GW Detectors

GW Spectrum

Multiband Observations

Same BH mergers observable by aLIGO and eLISA

Sesana, 2016

BH/BH Observations

- One can only observe redshifted masses (1+z)M
- For known detector concepts, there is a highest observable BH mass
- 3G detectors would take a BH census starting at an age of the Universe of about 650Myr

Redshift z

BH/BH Horizon

- Redshift effect causes detection horizons to peak at relatively low BH/BH masses.
- Horizons for observed masses peak at similar values
- Redshift effect is stronger for 3G detectors so that 3G horizons peak at lower intrinsic masses

NS Equation of State

Tidal deformation parameterized by NS polarizability μ_2 , which is proportional to Love number k₂.

NS equation of state Rosswog, 2012 (assuming Adv LIGO/Virgo network)

Del Pozzo et al, 2013

10/11/2016

Testing GR

Yunes et al, 2016

Observing BH mergers, we access a completely new regime of gravity (strong field).

Observe deviations of PN

Black-Hole Spectroscopy

Observe quasi-normal modes at ringdown. SNR dominated by mode l,m=22, then 33 and 21. Energy has different distribution for other objects.

Yunes et al, 2016

10/11/2016

Harms @ APC

ET Design Study

Cosmology/Cosmography

Dark energy EOS

	Δw_0		
$\vec{\Omega}_{\rm free}$ N _{sources}	10 ³	10 ⁵	107
w_0, w_1 $h, \Omega_M, \Omega_\Lambda, w_0, w_1$	3×10^{-1} 9×10^{-1}	3×10^{-2} 9×10^{-2}	3×10^{-3} 9×10^{-3}

Li, 2014

- 1. Measure tidal effects in BNS mergers
- Estimate intrinsic mass of NS (knowing NS EOS)
- Infer redshift of source (if exists, use EM counterpart instead)

Cosmological stochastic GW background

- 1. Detection unlikely
- 2. Interesting physics: inflaton decay

Black-hole survey

- 1. Black hole evolution
- 2. Intermediate-mass black holes
- 3. Stellar environment as function of redshift
- 4. Possible primordial BH detection

Electromagnetic Follow-Up

Wide-field telescope FOV >1 sq.degree

"Fast" and "smart" software to select a sample of candidate counterparts

characterize the candidate nature

Larger telescope to

VLT

The EM Counterpart!

Credit: M Branchesi

Source Localization

EM follow-up of GW150914

Not easy to cover hundreds of deg² of sky with FOV of 1-10 deg²!

10/11/2016

Localization Near Detection Range

(1.38+1.42)BNS	SNR	SKY ΔΩ DEG2	INC. ∆I DEG	DIST ∆D/D	CHIRP MASS (PPM)	EPOCH ∆T (MS)
3XBB (800 MPC)	12	43	23	75%	50	0.47
BB = Adv LIGO/Virgo upgrade						
<mark>зхетв</mark> (3 GPC)	12.85	5 5	23	78%	60	0.52
3XALIGO (200 MPC)	10	56	27	62%	30	0.52
					Sath	va, 2015

Localization Depending on Detector

(1.38+1.42)BN at 800Mpc	IS SNR	SKY ΔΩ DEG²	INC. ΔI DEG	DIST ∆D/D	CHIRP MASS (PPM)	EPOCH ΔT (MS)
2 X BB + ETB	37	41	22	71%	5.6	0.41
ЗХЕТВ	39	5.7	7.6	25%	5.2	0.16
ЗХВВ	12	43	23	75%	52	0.47

Sathya, 2015